Pengertian
Metode simpleks merupakan salah satu teknik penyelesaian dalam program linear yang digunakan sebagai teknik pengambilan keputusan dalam permasalahan yang berhubungan dengan pengalokasian sumberdaya secara optimal. Metode simpleks digunakan umtuk mencari nilai optimal dari program linear yang melibatkan banyak constraint (pembatas) dan banyak variable.
Pendahuluan
Selanjutnya berbagai alat dan metode dikembangkan untuk menyelesaikan masalah program linear bahkan sampai pada masalah riset operasi hingga tahun 1950an seperti pemrogaman dinamik, teori antrian, dan persediaan.
Program Linier merupakan metode matematik dalam mengalokasikan sumber daya yang langka untuk mencapai tujuan tunggal seperti memaksimumkan atau meminimumkan biaya. Program linier banyak diterapkan dalam membantu menyelesaikan masalah ekonomi, industri, militer, social, dan lain-lain.
Karakteristik persoalan dalam program linier adalah sebagai berikut :
1. Ada tujuan yang ingin dicapai
2. Tersedia beberapa alternatif untuk mencapai tujuan
3. Sumberdaya dalam keadaan terbatas
4.Dapat dirumuskan dalam bentuk matematika (persaman/ketidaksamaan)
Contoh pernyataan ketidaksamaan:
Untuk menghasilkan sejumlah meja dan kursi secara optimal, total biaya yang dikeluarkan tidak boleh lebih dari dana yang tersedia. Ada dua metode penyelesaian masalah yang digunakan dalam program linearm program linier, yaitu metodegrafis (untuk 2 variabel) dan metode simpleks (untuk 2 variabel atau lebih). Beberapa ketentuan yang perlu diperhatikan dalam penyelesaian metode simpleks :
- Nilai kanan fungsi tujuan harus nol (0)
- Nilai kanan fungsi kendala harus positif. Apabila negatif, nilai tersebut harus dikali dengan -1
- Fungsi kendala dengan tanda “≤” harus diubah ke bentuk “=” dengan menambahkan variabel slack/surplus. Variabel slack/surplus disebut juga variabel dasar. Penambahan slack variabel menyatakan kapasitas yang tidak digunakan untuk menyatakan kapasitas yang tidak digunakan atau tersisa pada sumber daya tersebut. Hal ini karena ada kemungkinan kapasitas yang tersedia tidak semua digunakan dalam proses produksi.
- Fungsi kendala dengan tanda “≥” diubah ke bentuk “≤” dengan cara mengkalikan dengan -1, lalu diubah ke bentuk persamaan (=) dengan ditambah variabel slack. Kemudian karena nilai kanannya negatif, dikalikan lagi dengan (-1) dan ditambah artificial variabel (M) Artificial variabel ini secara fisik tidak mempunyai arti, dan hanya digunakan untuk kepentingan perhitungan saja.
- Fungsi kendala dengan tanda “=” harus ditambah artificial variabel (M
Contoh Persoalan: (Perusahaan Meubel)
Suatu perusahaan menghasilkan dua produk, meja dan kursi yang diproses melalui dua bagian fungsi : perkitan dan pemolesan. Pada bagian perakitan tersedia 60 jam kerja, sedangkan pada bagian pemolesan hanya 48 jam kerja. Untuk menghasilkan 1 meja diperlukan 4 jam perkitan dan 2 jam kerja pemolesan, sedangkan untuk menghasilkan 1 kursi diperlukan 2 jam kerja perakitan dan 4 jam kerja pemolesan. Laba untuk setiap meja dan kursi yang dihasilkan masing-masing Rp. 80.000 dan Rp. 60.000,-
Berapa jumlah meja dan kursi yang optimal dihasilkan ?
Penyelesaian:
Definisi variabel keputusan:
Keputusan yang akan diambil adalah berapakah jumlah meja dan kursi yg akan dihasilkan. Jika meja disimbolkan dengan M dan kursi dengan K, maka definisi variabel keputusan :
M = jumlah meja yang akan dihasilkan (dalam satuan unit)
K = jumlah kursi yang akan dihasilkan (dalam satuan unit)
Perumusan fungsi tujuan:
Laba untuk setiap meja dan kursi yg dihasilkan masing- masing Rp. 80.000 dan Rp. 60.000. tujuan perusahaan adalah untuk memaksimumkan laba dari sejumlah meja dan kursi yang dihasilkan . dengan demikian, fungsi tujuan dapat ditulis
Fungsi Maks.:
Laba = 8 M + 6 K (dalam satuan Rp.10. 000)
Perumusan fungsi kendala:
Dengan kendala:
4M + 2K ≤ 60
2M + 4K ≤48
Kendala non-negatif:
Meja dan kursi yang dihasilkan tidak memiliki nilai negatif.
M ≥ 0
K ≥ 0
Ketentuan Penggunaan Tabel Simpleks
1. Fungsi – fungsi batasan menggunakan notasi ≤
2.Fungsi Batasan harus diubah dari ≤ ke bentuk “=“ dengan menambahkan slack variable (variabel surplus) yang dimulai dari Xn+1, Xn+2…. Xn+m
3. Proses pengulangan dihentikan apabila koefisien–koefisien dari fungsi tujuan sudah tidak ada yang negatif.